HIV Mutation Detail Information

Virus Mutation HIV Mutation R80A


Basic Characteristics of Mutations
Mutation Site R80A
Mutation Site Sentence TABLE 1.Summary of mutant HIV-1 and HIV-2 Vpr data
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Vpr
Standardized Encoding Gene Vpr  
Genotype/Subtype HIV-1 M;N;O;P
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 32753492
Title HIV Vpr Modulates the Host DNA Damage Response at Two Independent Steps to Damage DNA and Repress Double-Strand DNA Break Repair
Author Li D,Lopez A,Sandoval C,Nichols Doyle R,Fregoso OI
Journal mBio
Journal Info 2020 Aug 4;11(4):e00940-20
Abstract The DNA damage response (DDR) is a signaling cascade that is vital to ensuring the fidelity of the host genome in the presence of genotoxic stress. Growing evidence has emphasized the importance of both activation and repression of the host DDR by diverse DNA and RNA viruses. Previous work has shown that HIV-1 is also capable of engaging the host DDR, primarily through the conserved accessory protein Vpr. However, the extent of this engagement has remained unclear. Here, we show that HIV-1 and HIV-2 Vpr directly induce DNA damage and stall DNA replication, leading to the activation of several markers of double- and single-strand DNA breaks. Despite causing damage and activating the DDR, we found that Vpr represses the repair of double-strand breaks (DSB) by inhibiting homologous recombination (HR) and nonhomologous end joining (NHEJ). Mutational analyses of Vpr revealed that DNA damage and DDR activation are independent from repression of HR and Vpr-mediated cell cycle arrest. Moreover, we show that repression of HR does not require cell cycle arrest but instead may precede this long-standing enigmatic Vpr phenotype. Together, our data uncover that Vpr globally modulates the host DDR at at least two independent steps, offering novel insight into the primary functions of lentiviral Vpr and the roles of the DNA damage response in lentiviral replication.IMPORTANCE The DNA damage response (DDR) is a signaling cascade that safeguards the genome from genotoxic agents, including human pathogens. However, the DDR has also been utilized by many pathogens, such as human immunodeficiency virus (HIV), to enhance infection. To properly treat HIV-positive individuals, we must understand how the virus usurps our own cellular processes. Here, we have found that an important yet poorly understood gene in HIV, Vpr, targets the DDR at two unique steps: it causes damage and activates DDR signaling, and it represses the ability of cells to repair this damage, which we hypothesize is central to the primary function of Vpr. In clarifying these important functions of Vpr, our work highlights the multiple ways human pathogens engage the DDR and further suggests that modulation of the DDR is a novel way to help in the fight against HIV.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.