EBV Mutation Detail Information

Virus Mutation EBV Mutation S186T


Basic Characteristics of Mutations
Mutation Site S186T
Mutation Site Sentence A Z mutant containing threonine at residue 186 [Z(S186T)] bound only to the methylated form of the ZRE-2 site in Rp and induced lytic EBV gene transcription from the methylated, but not demethylated, form of the viral genome.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region BZLF1
Standardized Encoding Gene BZLF1  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 15919888
Title BZLF1 activation of the methylated form of the BRLF1 immediate-early promoter is regulated by BZLF1 residue 186
Author Bhende PM,Seaman WT,Delecluse HJ,Kenney SC
Journal Journal of virology
Journal Info 2005 Jun;79(12):7338-48
Abstract The Epstein-Barr virus (EBV) genome is highly methylated in latently infected cells. We recently reported that the EBV immediate-early (IE) protein BZLF1 (Z) preferentially binds to and activates transcription from the methylated form of the BRLF1 IE gene promoter (Rp). We now report that serine residue 186 in the Z DNA-binding domain plays an important role in the ability of Z to bind to and activate methylated Rp. A Z mutant containing an alanine residue at position 186 [Z(S186A)] was significantly defective in binding to methylated, as well as unmethylated, ZREs (Z-responsive elements) in Rp and was unable to activate lytic EBV gene transcription from the methylated or demethylated form of the viral genome. A Z mutant containing threonine at residue 186 [Z(S186T)] bound only to the methylated form of the ZRE-2 site in Rp and induced lytic EBV gene transcription from the methylated, but not demethylated, form of the viral genome. The defect in both of these mutants was primarily due to an inability to activate the Rp in the context of the viral genome. Finally, a Z mutant containing an aspartic acid at position 186 [Z(S186D)] did not bind to either the consensus AP-1 site or to the methylated or unmethylated Rp ZRE-2 site and did not induce lytic gene transcription. These results indicate that replacement of serine with threonine at residue 186 in the Z DNA-binding domain differentially affects its ability to reactivate the unmethylated, versus methylated, viral genome.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.