HBV Mutation Detail Information

Virus Mutation HBV Mutation S202G


Basic Characteristics of Mutations
Mutation Site S202G
Mutation Site Sentence Novel 2'-fluoro-6'-methylene-carbocyclic adenosine (FMCA) monophosphate prodrug (FMCAP) was synthesized and evaluated for its in vitro anti-HBV potency against a lamivudine-entecavir resistant clone (L180M+M204V+S202G).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene P  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment Lamivudine(LAM);Entecavir(ETV)
Location -
Literature Information
PMID 23237841
Title 2'-Fluoro-6'-methylene-carbocyclic adenosine phosphoramidate (FMCAP) prodrug: in vitro anti-HBV activity against the lamivudine-entecavir resistant triple mutant and its mechanism of action
Author Rawal RK,Singh US,Chavre SN,Wang J,Sugiyama M,Hung W,Govindarajan R,Korba B,Tanaka Y,Chu CK
Journal Bioorganic & medicinal chemistry letters
Journal Info 2013 Jan 15;23(2):503-6
Abstract Novel 2'-fluoro-6'-methylene-carbocyclic adenosine (FMCA) monophosphate prodrug (FMCAP) was synthesized and evaluated for its in vitro anti-HBV potency against a lamivudine-entecavir resistant clone (L180M+M204V+S202G). FMCA demonstrated significant antiviral activity against wild-type as well as lamivudine-entecavir resistant triple mutant (L180M+M204V+S202G). The monophosphate prodrug (FMCAP) demonstrated greater than 12-fold (12x) increase in anti-HBV activity without increased cellular toxicity. Mitochondrial and cellular toxicity studies of FMCA indicated that there is no significant toxicity up to 100 muM. Mode of action studies by molecular modeling indicate that the 2'-fluoro moiety by hydrogen bond as well as the Van der Waals interaction of the carbocyclic ring with the phenylalanine moiety of the polymerase promote the positive binding, even in the drug-resistant mutants.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.