HBV Mutation Detail Information

Virus Mutation HBV Mutation S202T


Basic Characteristics of Mutations
Mutation Site S202T
Mutation Site Sentence Secondary substitutions (rtL80V and rtV173G/A/L) occurred more frequently than primary NUCr substitutions (rtI169L; rtA181G; T184A/S; rtS202T/R; rtM204L and rtM250K).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene P  
Genotype/Subtype D
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 28749433
Title HBV Drug Resistance Substitutions Existed before the Clinical Approval of Nucleos(t)ide Analogues: A Bioinformatic Analysis by GenBank Data Mining
Author Xu X,Xiang K,Su M,Li Y,Ji W,Li Y,Zhuang H,Li T
Journal Viruses
Journal Info 2017 Jul 27;9(8):199
Abstract Naturally occurring nucleos(t)ide analogue resistance (NUCr) substitution frequencies in the reverse transcriptase (RT) of the hepatitis B virus (HBV) were studied extensively after the clinical approval of nucleos(t)ide analogues (NUCs; year of approval 1998). We aimed to study NUCr substitutions in HBV RT sequences obtained before 1998 and better understand the evolution of RT sequences without NUC pressures. Our strategy was to retrieve HBV sequences from GenBank deposited before 1998. The initial search used the keywords ""hepatitis B virus"" or ""HBV"" and 1139 sequences were found. Data analyses included information extraction: sequence quality control and amino acid substitution analysis on 8 primary NUCr and 3 secondary substitution codons. Three hundred and ninety-four RT-containing sequences of 8 genotypes from 25 countries in 4 continents were selected. Twenty-seven (6.9%) sequences were found to harbor substitutions at NUCr-related codons. Secondary substitutions (rtL80V and rtV173G/A/L) occurred more frequently than primary NUCr substitutions (rtI169L; rtA181G; T184A/S; rtS202T/R; rtM204L and rtM250K). Typical amino acid substitutions associated with NUCr were of rtL80V, rtV173L and rtT184A/S. We confirm the presence of naturally occurring typical HBV NUCr substitutions with very low frequencies, and secondary substitutions are more likely to occur than primary NUCr substitutions without the selective pressure of NUCs.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.