HSV1 Mutation Detail Information

Virus Mutation HSV1 Mutation S216N


Basic Characteristics of Mutations
Mutation Site S216N
Mutation Site Sentence The mutation selected by the Ia MAb HD1 (Ser to Asn at residue 216) is identical to that selected by MAb LP2, another Ia antibody.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region gD
Standardized Encoding Gene US6  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 2154881
Title Antigenic and functional analysis of a neutralization site of HSV-1 glycoprotein D
Author Muggeridge MI,Wu TT,Johnson DC,Glorioso JC,Eisenberg RJ,Cohen GH
Journal Virology
Journal Info 1990 Feb;174(2):375-87
Abstract Herpes simplex virus glycoprotein D is a component of the virion envelope and appears to be involved in attachment, penetration, and cell fusion. Monoclonal antibodies (MAbs) against this protein can be arranged in groups, on the basis of a number of biological and biochemical properties. Group I antibodies are type-common, have high complement-independent neutralization titers, recognize discontinuous (conformational) epitopes, and block each other in a binding assay. The sum of their epitopes constitutes antigenic site I of gD. Using a panel of neutralization-resistant mutants, we previously found that group I MAbs can be divided into two subgroups, Ia and Ib, such that mutations selected with Ia antibodies have little or no effect on binding and neutralization by Ib antibodies, and vice versa. Antigenic site I therefore consists of two parts, Ia and Ib. We have now identified the point mutations which prevent neutralization. Two Ib MAbs (DL11 and 4S) selected a Ser to Asn change at residue 140; this alteration creates a new N-linked glycosylation site, which is used. A third Ib MAb (D2) selected a Gln to Leu change at 132. The mutation selected by the Ia MAb HD1 (Ser to Asn at residue 216) is identical to that selected by MAb LP2, another Ia antibody. By using oligonucleotide-directed mutagenesis, we have produced gD genes with combinations of the above mutations. Attempts to recombine these genes into the virus genome were unsuccessful, suggesting that the combinations are lethal. This was confirmed by a complementation assay which measures the ability of gD transiently expressed in transfected Vero cells to rescue the production of infectious virus by the gD-minus mutant F-gD beta.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.