EBV Mutation Detail Information

Virus Mutation EBV Mutation S229T


Basic Characteristics of Mutations
Mutation Site S229T
Mutation Site Sentence Group A variants share the most sequence homology with B95.8 and are characterized by three mutations at aa 212 (Gly to Ser), aa 328 (Glu to Gln), and aa 366 (Ser to Thr). Group B variants are defined by nine amino acid substitutions that include aa 212 (Gly to Ser), aa 229 (Ser to Thr), aa 252 (Gly to Ala), aa 309 (Ser to Asn), aa 322 (Gln to Asp), aa 334 (Gln to Arg), aa 338 (Leu to Ser), aa 352 (His to Arg), and aa 366 (Ser to Thr). Group C clones contain mutations at aa 212 (Gly to Ser), aa 309 (Ser to Asn), aa 322 (Gln to Asn), aa 334 (Gln to Arg), and aa 338 (Leu to Ser) and share the 10-aa deletion overlapping the start of the CTAR2 region (aa 346-355) with the CAO variant of LMP1.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region LMP-1
Standardized Encoding Gene LMP-1  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 18986987
Title Tumor-derived variants of Epstein-Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos
Author Vaysberg M,Hatton O,Lambert SL,Snow AL,Wong B,Krams SM,Martinez OM
Journal The Journal of biological chemistry
Journal Info 2008 Dec 26;283(52):36573-85
Abstract Latent membrane protein 1 (LMP1) of Epstein-Barr virus (EBV) is a proven oncogene that is essential for transformation of human B cells by the virus. LMP1 induces constitutive activation of several signal transduction pathways involving nuclear factor kappaB, phosphatidylinositol 3-kinase/Akt, and the mitogen-activated protein kinases (MAPK) p38, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (Erk). Sequencing of LMP1 isolated from a panel of EBV+ B cell lymphomas identified three different variants of LMP1, each distinct from the B95.8 prototype isoform. All tumor variants of LMP1 as well as the B95.8 LMP1 isoform were able to induce rapid p38 phosphorylation as well as Akt and JNK activation. Additionally all variants showed similar ability to activate nuclear factor kappaB. In contrast, only tumor-derived LMP1 variants induced prolonged Erk activation and c-Fos expression. Sequence analysis revealed only two amino acids, 212 and 366, shared by the tumor variants but distinct from B95.8. Point mutation of either amino acids 212 (glycine to serine) or 366 (serine to threonine) from the B95.8 isoform to the tumor variant version of LMP1 was sufficient for gain of function characterized by sustained activation of Erk and subsequent c-Fos induction and binding to the AP1 site. Our results indicate that the enhanced ability of tumor-derived LMP1 to induce and stabilize the c-Fos oncogene can be localized to two amino acids in the C terminus of LMP1.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.