SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation S371F


Basic Characteristics of Mutations
Mutation Site S371F
Mutation Site Sentence In the context of the BA.1 spike, individual constructs separately carrying individual BA.2-signature RBD mutations (i.e., S371F, T376A, D405N, R408S, G446, and G496) were tested for in vitroneutralization by AZD7442 and its MAb components (Fig. 4A).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RBD
Standardized Encoding Gene S  
Genotype/Subtype BA.2
Viral Reference NC_045512.2
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 36877050
Title Molecular Characterization of AZD7442 (Tixagevimab-Cilgavimab) Neutralization of SARS-CoV-2 Omicron Subvariants
Author Roe TL,Brady T,Schuko N,Nguyen A,Beloor J,Guest JD,Aksyuk AA,Tuffy KM,Zhang T,Streicher K,Kelly EJ,Kijak GH
Journal Microbiology spectrum
Journal Info 2023 Mar 6;11(2):e0033323
Abstract Therapeutic anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (MAbs) provide immunosuppressed and vulnerable populations with prophylactic and treatment interventions against coronavirus disease 2019 (COVID-19). AZD7442 (tixagevimab-cilgavimab) is a combination of extended-half-life neutralizing MAbs that bind to distinct epitopes on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. The Omicron variant of concern carries mutations at >35 positions in the spike protein and has undergone further genetic diversification since its emergence in November 2021. Here, we characterize the in vitro neutralization activity of AZD7442 toward major viral subvariants circulating worldwide during the first 9 months of the Omicron wave. BA.2 and its derived subvariants showed the highest susceptibility to AZD7442, while BA.1 and BA.1.1 showed a lower susceptibility. BA.4/BA.5 had a susceptibility level intermediate between BA.1 and BA.2. Mutagenesis of parental Omicron subvariant spike proteins was performed to establish a molecular model to describe the underlying determinants of neutralization by AZD7442 and its component MAbs. The concurrent mutation of residues at positions 446 and 493, located in the tixagevimab and cilgavimab binding sites, was sufficient to enhance in vitro susceptibility of BA.1 to AZD7442 and its component MAbs to levels similar to the Wuhan-Hu-1+D614G virus. AZD7442 maintained neutralization activity against all Omicron subvariants tested up to and including BA.5. The evolving nature of the SARS-CoV-2 pandemic warrants continuing real-time molecular surveillance and assessment of in vitro activity of MAbs used in prophylaxis against and the treatment of COVID-19. IMPORTANCE MAbs are key therapeutic options for COVID-19 prophylaxis and treatment in immunosuppressed and vulnerable populations. Due to the emergence of SARS-CoV-2 variants, including Omicron, it is vital to ensure that neutralization is maintained for MAb-based interventions. We studied the in vitro neutralization of AZD7442 (tixagevimab-cilgavimab), a cocktail of two long-acting MAbs targeting the SARS-CoV-2 spike protein, toward Omicron subvariants circulating from November 2021 to July 2022. AZD7442 neutralized major Omicron subvariants up to and including BA.5. The mechanism of action responsible for the lower in vitro susceptibility of BA.1 to AZD7442 was investigated using in vitro mutagenesis and molecular modeling. A combination of mutations at two spike protein positions, namely, 446 and 493, was sufficient to enhance BA.1 susceptibility to AZD7442 to levels similar to the Wuhan-Hu-1+D614G ancestral virus. The evolving nature of the SARS-CoV-2 pandemic warrants continuing real-time global molecular surveillance and mechanistic studies of therapeutic MAbs for COVID-19.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.