HBV Mutation Detail Information

Virus Mutation HBV Mutation S54P


Basic Characteristics of Mutations
Mutation Site S54P
Mutation Site Sentence The frequencies of four mutations in the S region (G145R, K160R, L173P and Q181R), four mutations in the RT region (R153Q, S256G, C332S and L336M) and five mutations in the X region (S54P, L55F, R56P, L58P and C69P) decreased in the 8th week, whereas the frequencies of many mutations in the S, P and X regions clearly increased.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region X
Standardized Encoding Gene X  
Genotype/Subtype -
Viral Reference AB014381
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location China
Literature Information
PMID 28325923
Title Clinical features and viral quasispecies characteristics associated with infection by the hepatitis B virus G145R immune escape mutant
Author Xue Y,Wang MJ,Yang ZT,Yu DM,Han Y,Huang D,Zhang DH,Zhang XX
Journal Emerging microbes & infections
Journal Info 2017 Mar 22;6(3):e15
Abstract Coexistence of the hepatitis B surface antigen (HBsAg) and hepatitis B surface antibody (anti-HBs) is an uncommon phenomenon, and the underlying mechanisms remain largely unknown. Amino-acid (aa) substitution from glycine to arginine at aa 145 (G145R), in the major hydrophilic region, has been reported in patients with HBsAg and anti-HBs coexistence. However, there is limited knowledge about the clinical features and viral quasispecies characteristics associated with G145R mutant hepatitis B virus (HBV) infection. We herein describe the dynamic changes in the serological and virological markers in a case of hepatitis B with coexisting HBsAg and anti-HBs, caused by a G145R immune escape mutant (genotype C). Entecavir was administered during the 4th week after admission. Alanine aminotransferase peaked in the 16th week, while both the HBsAg and HBeAg declined rapidly. HBsAg clearance and hepatitis B e antigen (HBeAg)/hepatitis B e antibody (anti-HBe) seroconversion were achieved in the 36th week, and then entecavir was withdrawn. A follow-up of 96 weeks showed that HBV DNA remained undetectable and that anti-HBs was maintained above 100 mIU/mL. The quasispecies characteristics of the G145R mutant HBV were investigated via ultra-deep sequencing. The complexity and genetic distance of the S and RT regions were much higher in the 8th week than at baseline or in the 4th week. Moreover, the frequencies of mutations (L173P, Q181R and A184V) in cytotoxic T lymphocyte epitopes increased before entecavir treatment. These findings extend understanding of the evolution of HBV under host immune pressure and of the clinical outcomes of affected patients.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.