SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation S68P


Basic Characteristics of Mutations
Mutation Site S68P
Mutation Site Sentence Table 1
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region E
Standardized Encoding Gene E  
Genotype/Subtype -
Viral Reference NC_045512.2
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location Uganda
Literature Information
PMID 36548384
Title Retrospective in silico mutation profiling of SARS-CoV-2 structural proteins circulating in Uganda by July 2021: Towards refinement of COVID-19 disease vaccines, diagnostics, and therapeutics
Author Odongo S,Okella H,Ndekezi C,Okee M,Namayanja M,Mujuni B,Sterckx YGJ,Kizito D,Radwanska M,Magez S,Ikwap K,Mwiine FN,Lutwama JJ,Ibingira C
Journal PloS one
Journal Info 2022 Dec 22;17(12):e0279428
Abstract The SARS-CoV-2 virus, the agent of COVID-19, caused unprecedented loss of lives and economic decline worldwide. Although the introduction of public health measures, vaccines, diagnostics, and therapeutics disrupted the spread of the SARS-CoV-2, the emergence of variants poses substantial threat. This study traced SARS-CoV-2 variants circulating in Uganda by July 2021 to inform the necessity for refinement of the intervention medical products. A comprehensive in silico analysis of the SARS-CoV-2 genomes detected in clinical samples collected from COVID-19 patients in Uganda revealed occurrence of structural protein variants with potential of escaping detection, resisting antibody therapy, or increased infectivity. The genome sequence dataset was retrieved from the GISAID database and the open reading frame encoding the spike, envelope, membrane, or nucleocapsid proteins was translated. The obtained protein sequences were aligned and inspected for existence of variants. The variant positions on each of the four alignment sets were mapped on predicted epitopes as well as the 3D structures. Additionally, sequences within each of the sets were clustered by family. A phylogenetic tree was constructed to assess relationship between the encountered spike protein sequences and Wuhan-Hu-1 wild-type, or the Alpha, Beta, Delta and Gamma variants of concern. Strikingly, the frequency of each of the spike protein point mutations F157L/Del, D614G and P681H/R was over 50%. The furin and the transmembrane serine protease 2 cleavage sites were unaffected by mutation. Whereas the Delta dominated the spike sequences (16.5%, 91/550), Gamma was not detected. The envelope protein was the most conserved with 96.3% (525/545) sequences being wild-type followed by membrane at 68.4% (397/580). Although the nucleocapsid protein sequences varied, the variant residue positions were less concentrated at the RNA binding domains. The dominant nucleocapsid sequence variant was S202N (34.5%, 205/595). These findings offer baseline information required for refining the existing COVID-19 vaccines, diagnostics, and therapeutics.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.