DENV Mutation Detail Information

Virus Mutation DENV Mutation T108I


Basic Characteristics of Mutations
Mutation Site T108I
Mutation Site Sentence In vitro resistance selection experiments with JNJ-1A induced mutation T108I in non-structural protein 4B (NS4B), pointing towards a mechanism of action linked to this protein.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NS4B
Standardized Encoding Gene NS4B
Genotype/Subtype DENV-2
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment JNJ-1A
Location -
Literature Information
PMID 29037976
Title Characterization of a dengue NS4B inhibitor originating from an HCV small molecule library
Author Hernandez-Morales I,Geluykens P,Clynhens M,Strijbos R,Goethals O,Megens S,Verheyen N,Last S,McGowan D,Coesemans E,De Boeck B,Stoops B,Devogelaere B,Pauwels F,Vandyck K,Berke JM,Raboisson P,Simmen K,Lory P,Van Loock M
Journal Antiviral research
Journal Info 2017 Nov;147:149-158
Abstract Dengue is the most important mosquito-transmitted viral disease and a major global health concern. Over the last decade, dengue virus (DENV) drug discovery and development has intensified, however, this has not resulted in approved DENV-specific antiviral treatments yet. DENV and hepatitis C virus (HCV) belong to the same Flaviviridae family and, in contrast to DENV, antiviral treatments for HCV have been licensed. Therefore, applying the knowledge gained on anti-HCV drugs may foster the discovery and development of dengue antiviral drugs. Here, we screened a library of compounds with established anti-HCV activity in a DENV-2 sub-genomic replicon inhibition assay and selected compounds with single-digit micromolar activity. These compounds were advanced into a hit-to-lead medicinal chemistry program resulting in lead compound JNJ-1A, which inhibited the DENV-2 sub-genomic replicon at 0.7 muM, in the absence of cytotoxicity. In addition, JNJ-1A showed equipotent antiviral activity against DENV serotypes 1, 2, and 4. In vitro resistance selection experiments with JNJ-1A induced mutation T108I in non-structural protein 4B (NS4B), pointing towards a mechanism of action linked to this protein. Collectively, we described the discovery and characterization of a novel DENV inhibitor potentially targeting NS4B.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.