HBV Mutation Detail Information

Virus Mutation HBV Mutation T184S


Basic Characteristics of Mutations
Mutation Site T184S
Mutation Site Sentence This patient who underwent sequential monotherapies with LAM and ETV showed a unique mutation pattern: rtL180M + rtM204V+rtS219A + rtV253E with or without rtT184A/S.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene P  
Genotype/Subtype C
Viral Reference GQ872210
Functional Impact and Mechanisms
Disease Hepatitis B, Chronic    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information Y
Treatment Entecavir(ETV)
Location Korea
Literature Information
PMID 32216026
Title Entecavir-resistant hepatitis B virus decreases surface antigenicity: A full genome and functional characterization
Author Park S,Park ES,Koo JE,Park YK,Lee AR,Dezhbord M,Cho ES,Ahn SH,Kim DH,Lee JH,Lee HC,Kim KH
Journal Liver international : official journal of the International Association for the Study of the Liver
Journal Info 2020 Jul;40(7):1564-1577
Abstract BACKGROUND AND AIM: Since polymerase and surface genes overlap in hepatitis B virus (HBV), an antiviral-induced mutation in the polymerase gene may alter the surface antigenicity in patients with chronic hepatitis B (CHB), but this possibility has not been clearly confirmed. This study aimed to determine the drug susceptibility and surface antigenicity of the patient-derived mutants. PATIENTS AND METHODS: Full-length HBV genomes isolated from four entecavir-resistant CHB patients were cloned and sequenced. Around 10 clones of full-length HBV obtained from each patient were analysed and registered in the NCBI GenBank. Representative clones were further characterized by in vitro drug susceptibility and surface antigenicity assays. RESULTS: The rtL180M + rtM204V mutations were common among all the clones analysed. Additionally, the ETV resistance mutations rtT184A/L, rtS202G and rtM250V were found among three patients. Most of the ETV-resistant mutants had amino acid alterations within the known epitopes recognized by T- and B-cells in the HBV surface and core antigens. The in vitro drug susceptibility assay showed that all tested clones were resistant to ETV treatment. However, they were all susceptible to ADV and TDF. More importantly, the rtI169T mutation in the RT domain, led to the sF161L mutation in the overlapping S gene, which decreased in surface antigenicity. CONCLUSIONS: The ETV resistance mutations can affect the antigenicity of the HBsAg proteins due to changes in the overlapping sequence of this surface antigen. Thus, the apparent decline or disappearance of HBsAg needs to be interpreted cautiously in patients with previous or current antiviral resistance mutations.
Sequence Data JF828905-JF828938
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.