HBV Mutation Detail Information

Virus Mutation HBV Mutation T1855C


Basic Characteristics of Mutations
Mutation Site T1855C
Mutation Site Sentence Table 1
Mutation Level Nucleotide level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region PreC
Standardized Encoding Gene C  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 16378961
Title Point mutations upstream of hepatitis B virus core gene affect DNA replication at the step of core protein expression
Author Guarnieri M,Kim KH,Bang G,Li J,Zhou Y,Tang X,Wands J,Tong S
Journal Journal of virology
Journal Info 2006 Jan;80(2):587-95
Abstract The pregenomic RNA directs replication of the hepatitis B virus (HBV) genome by serving both as the messenger for core protein and polymerase and as the genome precursor following its packaging into the core particle. RNA packaging is mediated by a stem-loop structure present at its 5' end designated the epsilon signal, which includes the core gene initiator AUG. The precore RNA has a slightly extended 5' end to cover the entire precore region and, consequently, directs the translation of a precore/core protein, which is secreted as e antigen (HBeAg) following removal of precore-derived signal peptide and the carboxyl terminus. A naturally occurring G1862T mutation upstream of the core AUG affects the bulge of the epsilon signal and generates a ""forbidden"" residue at the -3 position of the signal peptide cleavage site. Transfection of this and other mutants into human hepatoma cells failed to prove their inhibition of HBeAg secretion but rather revealed great impairment of genome replication. This replication defect was associated with reduced expression of core protein and could be overcome by a G1899A covariation, or by nonsense or frameshift mutation in the precore region. All these mutations antagonized the G1862T mutation on core protein expression. Cotransfection of the G1862T mutant with a replication-deficient HBV genome that provides core protein in trans also restored genome replication. Consistent with our findings in cell culture, HBV genotype A found in African/Asian patients has T1862 and is associated with much lower viremia titers than the European subgroup of genotype A.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.