HIV Mutation Detail Information

Virus Mutation HIV Mutation T218S


Basic Characteristics of Mutations
Mutation Site T218S
Mutation Site Sentence TABLE 1.The frequency of IN mutations present in the co-occurrence network.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region IN
Standardized Encoding Gene gag-pol:155348
Genotype/Subtype HIV-1
Viral Reference Q76353
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment raltegravir (RAL);INSTIs
Location -
Literature Information
PMID 31551948
Title Raltegravir-Induced Adaptations of the HIV-1 Integrase: Analysis of Structure, Variability, and Mutation Co-occurrence
Author Machado LA,Gomes MFDC,Guimaraes ACR
Journal Frontiers in microbiology
Journal Info 2019 Sep 3;10:1981
Abstract The human immunodeficiency virus type 1 (HIV-1) has several proteins of therapeutic importance, many of which are currently used as drug targets in antiretroviral therapy. Among these proteins is the integrase, which is responsible for the integration of the viral DNA into the host genome - a crucial step for HIV-1 replication. Given the importance of this protein in the replication process, three integrase inhibitors are currently used as an option for antiretroviral therapy: Raltegravir, Elvitegravir, and Dolutegravir. However, the crescent emergence of mutations that cause resistance to these drugs has become a worldwide health problem. In this study, we compared the variability of each position of the HIV-1 integrase sequence in clinical isolates of Raltegravir-treated and drug-naive patients by calculating their Shannon entropies. A co-occurrence network was created to explore how mutations co-occur in patients treated with Raltegravir. Then, by building tridimensional models of the HIV-1 integrase intasomes, we investigated the relationship between variability, architecture, and co-occurrence. We observed that positions bearing some of the major resistance pathways are highly conserved among non-treated patients and variable among the treated ones. The residues involved in the three main resistance-related mutations could be identified in the same group when the positions were clustered according to their entropies. Analysis of the integrase architecture showed that the high-entropy residues S119, T124, and T125, are in contact with the host DNA, and their variations may have impacts in the protein-DNA recognition. The co-occurrence network revealed that the major resistance pathways N155H and Q148HR share more mutations with each other than with the Y143R pathway, this observation corroborates the fact that the N155H pathway is most commonly converted into Q148HRK than into Y143RCH pathway in patients' isolates. The network and the structure analysis also support the hypothesis that the resistance-related E138K mutation may be a mechanism to compensate for mutations in neighbor lysine residues to maintain DNA binding. The present study reveals patterns by which the HIV-1 integrase adapts during Raltegravir therapy. This information can be useful to comprehend the impacts of the drug in the enzyme, as well as help planning new therapeutic approaches.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.