SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation T21I


Basic Characteristics of Mutations
Mutation Site T21I
Mutation Site Sentence In this study, we selected seven Mpro variants (T21I, L50F, E166V, A173V, T190I, E166V/L50F, and A173V/L50F), which have been repeatedly found in viral passage experiments.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Mpro
Standardized Encoding Gene ORF1a  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 39990941
Title Exploring Possible Drug-Resistant Variants of SARS-CoV-2 Main Protease (M(pro)) with Noncovalent Preclinical Candidate, Mpro61
Author Kenneson JR,Papini C,Tang S,Huynh K,Zhang CH,Jorgensen WL,Anderson KS
Journal ACS bio & med chem Au
Journal Info 2025 Jan 27;5(1):215-226
Abstract SARS-CoV-2 M(pro) inhibitors, such as nirmatrelvir, have proven efficacy in clinical use. Nirmatrelvir was developed in a target-based approach against wild-type M(pro), with the anticipation that prolonged usage may cause enrichment of drug-resistant mutations and persistence of COVID infections. Although globally prevalent drug-resistant mutations have not yet been observed, individual cases have recently been reported among patients following treatment with Paxlovid-a formulation of nirmatrelvir. Mutations E166V and E166A have been detected in these drug-resistant clinical isolates, consistent with predictions from in vitro viral passage experiments and therefore necessitate ongoing drug development. In this study, we selected seven M(pro) variants (T21I, L50F, E166V, A173V, T190I, E166V/L50F, and A173V/L50F), which have been repeatedly found in viral passage experiments. We investigated their kinetic and structural properties, as well as resistance level to M(pro) inhibitors: nirmatrelvir, GC376-a similar peptidomimetic for feline COVID infections, and our in-house-developed nonpeptidomimetic inhibitor Mpro61. Mpro61 maintains potency against the single variants (except for E166V) and the A173/L50F double variant, with K (i) values similar to those of the wild type. In contrast, while nirmatrelvir and GC376 were still effective against the A173V/L50F double variant, their K (i) values significantly increased up to 10-fold. None of the inhibitors appeared to be potent against E166V-containing variants. Our structural analysis revealed a significant movement of Ser1 residue in all E166V-containing variants in the presence or absence of an inhibitor. The new orientation of the Ser1 suggested potential strategies for medicinal chemistry modifications of Mpro61 to enhance hydrogen-bonding interactions between these variants and Mpro61 derivatives. These studies provide critical insights into guiding the future design of additional Mpro61 derivatives that would potentially inhibit variants with the pan-drug-resistant E166V mutation.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.