TBEV Mutation Detail Information

Virus Mutation TBEV Mutation T2688A


R and T(10884)-->C substitutions clearly reduce virus virulence, the other mutations within the variable regions of the capsid (I(45)-->F) and the NS5 (T(2688)-->A and M(3385)-->I) genes also contribute to the process of attenuation. -->
Basic Characteristics of Mutations
Mutation Site T2688A
Mutation Site Sentence Therefore, although the H(496)-->R and T(10884)-->C substitutions clearly reduce virus virulence, the other mutations within the variable regions of the capsid (I(45)-->F) and the NS5 (T(2688)-->A and M(3385)-->I) genes also contribute to the process of attenuation.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region NS5
Standardized Encoding Gene NS5
Genotype/Subtype -
Viral Reference L40361
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 11413378
Title The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations
Author Gritsun TS,Desai A,Gould EA
Journal The Journal of general virology
Journal Info 2001 Jul;82(Pt 7):1667-1675
Abstract An infectious clone (pGGVs) of the tick-borne encephalitis complex virus Vasilchenko (Vs) was constructed previously. Virus recovered from pGGVs produced slightly smaller plaques than the Vs parental virus. Sequence analysis demonstrated five nucleotide differences between the original Vs virus and pGGVs; four of these mutations resulted in amino acid substitutions, while the fifth mutation was located in the 3' untranslated region (3'UTR). Two mutations were located in conserved regions and three mutations were located in variable regions of the virus genome. Reverse substitutions from the conserved regions of the genome, R(496)-->H in the envelope (E) gene and C(10884)-->T in the 3'UTR, were introduced both separately and together into the infectious clone and their biological effect on virus phenotype was evaluated. The engineered viruses with R(496) in the E protein produced plaques of smaller size than viruses with H(496) at this position. This mutation also affected the growth and neuroinvasiveness of the virus. In contrast, the consequence of a T(10884)-->C substitution within the 3'UTR was noticeable only in cytotoxicity and neuroinvasiveness tests. However, all virus mutants engineered by modification of the infectious clone, including one with two wild-type mutations, H(496) and T(10884), showed reduced neuroinvasiveness in comparison with the Vs parental virus. Therefore, although the H(496)-->R and T(10884)-->C substitutions clearly reduce virus virulence, the other mutations within the variable regions of the capsid (I(45)-->F) and the NS5 (T(2688)-->A and M(3385)-->I) genes also contribute to the process of attenuation. In terms of developing flavivirus vaccines, the impact of accumulating apparently minor mutations should be assessed in detail.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.