HBV Mutation Detail Information

Virus Mutation HBV Mutation T286N


Basic Characteristics of Mutations
Mutation Site T286N
Mutation Site Sentence The substitutions K122I, T123N and K160N in S-HBsAg in the present study led to the substitutions rtQ476H, rtN477K and rtI515L in HBV polymerase, K285I, T286N and K323N in L-HBsAg, and K178I, T179N and K215N in M-HBsAg,
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region S
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference AF282918
Functional Impact and Mechanisms
Disease Hepatitis B Virus Infection    
Immune Y
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 19812261
Title Biological significance of amino acid substitutions in hepatitis B surface antigen (HBsAg) for glycosylation, secretion, antigenicity and immunogenicity of HBsAg and hepatitis B virus replication
Author Wu C,Zhang X,Tian Y,Song J,Yang D,Roggendorf M,Lu M,Chen X
Journal The Journal of general virology
Journal Info 2010 Feb;91(Pt 2):483-92
Abstract Amino acid substitutions of hepatitis B surface antigen (HBsAg) may affect the antigenicity and immunogenicity of HBsAg, leading to immune escape and diagnostic failure. The amino acid positions 122 and 160 are known as determinants for HBsAg subtypes d/y and w/r, respectively. The substitution K122I has been shown to strongly affect HBsAg antigenicity. In this study, we investigated the significance of naturally occurring amino acid substitutions K122I, T123N, A159G and K160N. Both T123N and K160N substitutions resulted in additional N-glycosylated forms of HBsAg, while the other mutations produced more glycosylated HBsAg compared with the wild type (wt). Detection of HBsAg by ELISA and immunofluorescence staining indicated that variant HBsAg (vtHBsAg) with K122I was not recognized by HBsAg immunoassays, while vtHBsAg with T123N, A159G, K160N and A159G/K160N had reduced antigenicity. DNA immunization in BALB/c mice revealed that wtHBsAg and vtHBsAg with T123N and K160N are able to induce antibodies to HBsAg (anti-HBs), whereas K122I and A159G greatly impair the ability of HBsAg to trigger anti-HBs responses. The cellular immune response to the HBsAg aa 29-38 epitope was enhanced by the K160N substitution. Using replication competent clones of hepatitis B virus (HBV), T123N and A159G substitutions were shown to strongly reduce virion assembly. The amino acid substitution K160N appeared to compensate for the negative effect of A159G on virion production. These results reveal complex effects of amino acid substitutions on biochemical properties of HBsAg, on antigenicity and immunogenicity, and on the replication of HBV.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.