SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation T33A


Basic Characteristics of Mutations
Mutation Site T33A
Mutation Site Sentence This trend was different for KP.3.1.1, with its ablating mutation KP.3.1.1_T33A actually showing a slight 1.1-fold drop relative to KP.3.1.1 (P > 0.05).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region
Standardized Encoding Gene
Genotype/Subtype KP.3.1.1
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location USA
Literature Information
PMID 40135879
Title Role of glycosylation mutations at the N-terminal domain of SARS-CoV-2 XEC variant in immune evasion, cell-cell fusion, and spike stability
Author Li P,Faraone JN,Hsu CC,Chamblee M,Liu Y,Zheng Y-M,Xu Y,Carlin C,Horowitz JC,Mallampalli RK,Saif LJ,Oltz EM,Jones D,Li J,Gumina RJ,Bednash JS,Xu K,Liu S-L
Journal Journal of virology
Journal Info 2025 Apr 15;99(4):e0024225
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, producing new variants that drive global coronavirus disease 2019 surges. XEC, a recombinant of KS.1.1 and KP.3.3, contains T22N and F59S mutations in the spike protein's N-terminal domain (NTD). The T22N mutation, similar to the DelS31 mutation in KP.3.1.1, introduces a potential N-linked glycosylation site in XEC. In this study, we examined the neutralizing antibody (nAb) response and mutation effects in sera from bivalent-vaccinated healthcare workers, BA.2.86/JN.1 wave-infected patients, and XBB.1.5 monovalent-vaccinated hamsters, assessing responses to XEC alongside D614G, JN.1, KP.3, and KP.3.1.1. XEC demonstrated significantly reduced neutralization titers across all cohorts, largely due to the F59S mutation. Notably, removal of glycosylation sites in XEC and KP.3.1.1 substantially restored nAb titers. Antigenic cartography analysis revealed XEC to be more antigenically distinct from its common ancestral BA.2.86/JN.1 compared to KP.3.1.1, with the F59S mutation as a determining factor. Similar to KP.3.1.1, XEC showed reduced cell-cell fusion relative to its parental KP.3, a change attributed to the T22N glycosylation. We also observed reduced S1 shedding for XEC and KP.3.1.1, which was reversed by ablation of T22N and DelS31 glycosylation mutations, respectively. Molecular modeling suggests that T22N and F59S mutations of XEC alter hydrophobic interactions with adjacent spike protein residues, impacting both conformational stability and neutralization. Overall, our findings underscore the pivotal role of NTD mutations in shaping SARS-CoV-2 spike biology and immune escape mechanisms.IMPORTANCEThe continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of novel variants with enhanced immune evasion properties, posing challenges for current vaccination strategies. This study identifies key N-terminal domain (NTD) mutations, particularly T22N and F59S in the recent XEC variant, which significantly impacts antigenicity, neutralization, and spike protein stability. The introduction of an N-linked glycosylation site through T22N, along with the antigenic shift driven by F59S, highlights how subtle mutations can drastically alter viral immune recognition. By demonstrating that glycosylation site removal restores neutralization sensitivity, this work provides crucial insights into the molecular mechanisms governing antibody escape. Additionally, the observed effects on spike protein shedding and cell-cell fusion contribute to a broader understanding of variant fitness and transmissibility. These findings emphasize the importance of monitoring NTD mutations in emerging SARS-CoV-2 lineages and support the need for adaptive vaccine designs to counteract ongoing viral evolution.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.