|
Basic Characteristics of Mutations
|
|
Mutation Site
|
T478K |
|
Mutation Site Sentence
|
It could be possible that the 15 mutations of RBD Omicron are not evenly distributed in RBD, but rather crowed in its RBM with 10 residues, viz., N440K, G446S, S477N, T478K, E484A, Q493K, G496S, Q498R, N501Y, and Y505H. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
RBD |
|
Standardized Encoding Gene
|
S
|
|
Genotype/Subtype
|
Omicron |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
COVID-19
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
35966763
|
|
Title
|
Molecular dynamic simulation suggests stronger interaction of Omicron-spike with ACE2 than wild but weaker than Delta SARS-CoV-2 can be blocked by engineered S1-RBD fraction
|
|
Author
|
Santra D,Maiti S
|
|
Journal
|
Structural chemistry
|
|
Journal Info
|
2022;33(5):1755-1769
|
|
Abstract
|
The SARS-CoV-2 claimed millions of lives, globally. Occurring from Wuhan (wild type) in December, 2019, it constantly mutated to Omicron (B.1.1.529), the predecessor to Delta. Omicron having ~ 32 spike mutations has variable infectivity-multiplicity-immuno-invasive properties. Understanding of its mutational effect on ACE2-binding/disease severity and developing preventive/therapeutic strategies are important. The binding affinities of Wuhan/Delta/Omicron spikes (PDB/GISAID/SWISS-MODEL) were docked (HADDOCK2.4) with ACE2 and compared by competitive-docking (PRODIGY). The protein structural stability was verified by kinetic-data/Ramachandran-plot (Zlab/UMassMedBioinfo). After several trials, a 59 amino acid (453ARG-510VAL) peptide-cut (Expasy-server) of the wild-type spike RBD with some desired mutants (THR500SER/THR500GLY/THR500ALA/THR500CYS) was blindly/competitively docked (PyMOL-V2.2.2) to block the Omicron-ACE2 binding. We examined molecular dynamic simulation (iMOD-server, with 9000 cycles/300 k-heating/1 atm pressure for system equilibration for 50 ns-run) of ACE2 and two CUTs with different SARS-CoV-2 variants. The binding-affinity of Omicron-ACE2 is slightly higher than the rest two in competitive docking setup. During individual (1:1) docking, Omicron showed little higher than wild type but much weaker binding affinity than Delta. Competitive docking suggests ten H-bonding (1.3-2.4 A) with highly favorable energy values/Van-der-Walls-force/Haddock score for more stable-binding of Omicron-RBD with ACE2. Blind docking of different CUTs (wild/mutants) and Omicron to ACE2 completely rejected the Omicron-RBD from ACE2-target. The best blocking/binding affinity of -16.4 and -13 kcal/mole were observed in the case of THR500SER and THR500GLY, respectively, with multiple H-bonding 1.9-2.2 A. These are supported by the MD-simulation results. So, the spike binding affinities were Delta > Omicron > wild in 1:1 docking with ACE2. Considering the wild type is non-existing nowadays, Omicron showed less ACE2 binding properties. The 59 cut of spike-RBD and its mutant THR500SER/THR500GLY may be further screened as universal blockers of this virus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11224-022-02022-x.
|
|
Sequence Data
|
-
|
|
|