HIV Mutation Detail Information

Virus Mutation HIV Mutation T8V


Basic Characteristics of Mutations
Mutation Site T8V
Mutation Site Sentence This study examined crown motifs, N-glycosylation sites, and T8V mutations in all subtypes.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Env
Standardized Encoding Gene Env  
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment V3
Location Iranian
Literature Information
PMID 40034260
Title Prediction of the Co-receptor usage of the main worldwide HIV-1 subtypes, CRF, and CRF35-AD in Iranian patients via the five genotypic tools
Author Hashempour A,Akbarinia S,Khodadad N,Safari F,Mehrabi Z
Journal Biochemistry and biophysics reports
Journal Info 2025 Feb 17;41:101939
Abstract HIV-1 has various subtypes and CRFs, each with unique genetic attributes that impact the virus's spread, disease development, and response to treatment in different populations. Determining V3 tropism is crucial for utilizing CCR5 antagonists and understanding why certain HIV-1 subtypes are more pathogenic than others are. Genotypic coreceptor usage of 603 major subtypes of A, B, C, AE, and CRF35-AD is investigated via five bioinformatics tools (PhenoSeq, WebPSSM, Geno2Pheno, Net charge, and the 11/25 rule). This study examined crown motifs, N-glycosylation sites, and T8V mutations in all subtypes. R5 viruses are common in subtypes A, B, C, and CRF35-AD. These data indicate that R5 viruses in subtypes A and B are more prone to crown motif formation. The first report assessed the tropism of common HIV-1 subtypes and reported that CCR5 inhibitors could help treat patients with all subtypes but not AE. WebPSSM is a suitable method for determining HIV-1 tropism in different subtypes. Finally, large cohorts to assess virological response to CCR5 inhibitors would provide deep insight into the practicality of genotypic methods in clinical settings.
Sequence Data AY371159.1;M17451.1;U46016.1;U54771.1;AB703607
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.