SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation V1104L


Basic Characteristics of Mutations
Mutation Site V1104L
Mutation Site Sentence Importantly, expanding sublineages such as KP.2 containing R346T, F456L, and V1104L, showed similar neutralization resistance as JN.1 with R346T and F456L, suggesting V1104L does not appreciably affect antibody evasion.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region
Standardized Encoding Gene
Genotype/Subtype KP.3
Viral Reference -
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 39259045
Title Recurrent SARS-CoV-2 spike mutations confer growth advantages to select JN.1 sublineages
Author Wang Q,Mellis IA,Ho J,Bowen A,Kowalski-Dobson T,Valdez R,Katsamba PS,Wu M,Lee C,Shapiro L,Gordon A,Guo Y,Ho DD,Liu L
Journal Emerging microbes & infections
Journal Info 2024 Dec;13(1):2402880
Abstract The recently dominant SARS-CoV-2 Omicron JN.1 has evolved into multiple sublineages, with recurrent spike mutations R346T, F456L, and T572I, some of which exhibit growth advantages, such as KP.2 and KP.3. We investigated these mutations in JN.1, examining their individual and combined effects on immune evasion, ACE2 receptor affinity, and in vitro infectivity. F456L increased resistance to neutralization by human sera, including those after JN.1 breakthrough infections, and by RBD class-1 monoclonal antibodies, significantly altering JN.1 antigenicity. R346T enhanced ACE2-binding affinity and modestly boosted the infectivity of JN.1 pseudovirus, without a discernible effect on serum neutralization, while T572I slightly bolstered evasion of SD1-directed mAbs against JN.1's ancestor, BA.2, possibly by altering SD1 conformation. Importantly, expanding sublineages such as KP.2 containing R346T, F456L, and V1104L, showed similar neutralization resistance as JN.1 with R346T and F456L, suggesting V1104L does not appreciably affect antibody evasion. Furthermore, the hallmark mutation Q493E in KP.3 significantly reduced ACE2-binding affinity and viral infectivity, without noticeably impacting serum neutralization. Our findings illustrate how certain JN.1 mutations confer growth advantages in the population and could inform the design of the next COVID-19 vaccine booster.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.