SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation V483A


Basic Characteristics of Mutations
Mutation Site V483A
Mutation Site Sentence Furthermore, the binding strength of different MTs along with WT (wildtype) was revealed that MTs showed differential binding affinities to host protein with high binding strength exhibited by V367F and V483A MTs.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RBD
Standardized Encoding Gene S  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease -
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 34968787
Title Computational investigation reveals that the mutant strains of SARS-CoV2 have differential structural and binding properties
Author Kumar R,Kumar R,Goel H,Tanwar P
Journal Computer methods and programs in biomedicine
Journal Info 2022 Mar;215:106594
Abstract BACKGROUND AND OBJECTIVES: Remarkable infectivity of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) is due to the rapid emergence of various strains which enable the virus to ruling the world. Over the course of SARS-CoV2 pandemic, the scientific communities worldwide are responding to newly emerging genetic variants. However, mechanism behind the persistent infection of these variants is still not known due to the paucity of study of these variants at molecular level. In this scenario, computational methods have immense utility in understanding the molecular and functional properties of different variants. METHODS: The various mutants (MTs) of SpikeS1 receptor binding domain (RBD) of highly infectious SARS-CoV2 strains were manifested and elucidated the protein structure and binding strength using molecular dynamics (MD) simulation and protein-protein docking approaches. RESULTS: MD simulation study showed that all MTs exhibited stable structures with altered functional properties. Furthermore, the binding strength of different MTs along with WT (wildtype) was revealed that MTs showed differential binding affinities to host protein with high binding strength exhibited by V367F and V483A MTs. CONCLUSION: Hence, this study shed light on the molecular basis of infection caused by different variants of SARS-CoV2, which might play an important role in to cease the transmission and pathogenesis of virus and also implicate in rational designing of a specific drug.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.