SARS-CoV-2 Mutation Detail Information

Virus Mutation SARS-CoV-2 Mutation V70L


Basic Characteristics of Mutations
Mutation Site V70L
Mutation Site Sentence Rapidly emerging SARS-CoV-2 B.1.1.7 sub-lineage in the United States of America with spike protein D178H and membrane protein V70L mutations.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region M
Standardized Encoding Gene M  
Genotype/Subtype B.1.1.7
Viral Reference NC_045512
Functional Impact and Mechanisms
Disease COVID-19    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location America
Literature Information
PMID 34125658
Title Rapidly emerging SARS-CoV-2 B.1.1.7 sub-lineage in the United States of America with spike protein D178H and membrane protein V70L mutations
Author Shen L,Bard JD,Triche TJ,Judkins AR,Biegel JA,Gai X
Journal Emerging microbes & infections
Journal Info 2021 Dec;10(1):1293-1299
Abstract The SARS-CoV-2 B.1.1.7 lineage is highly infectious and as of April 2021 accounted for 92% of COVID-19 cases in Europe and 59% of COVID-19 cases in the U.S. It is defined by the N501Y mutation in the receptor-binding domain (RBD) of the Spike (S) protein, and a few other mutations. These include two mutations in the N terminal domain (NTD) of the S protein, HV69-70del and Y144del (also known as Y145del due to the presence of tyrosine at both positions). We recently identified several emerging SARS-CoV-2 variants of concerns, characterized by Membrane (M) protein mutations, including I82T and V70L. We now identify a sub-lineage of B.1.1.7 that emerged through sequential acquisitions of M:V70L in November 2020 followed by a novel S:D178H mutation first observed in early February 2021. The percentage of B.1.1.7 isolates in the US that belong to this sub-lineage increased from 0.15% in February 2021 to 1.8% in April 2021. To date, this sub-lineage appears to be U.S.-specific with reported cases in 31 states, including Hawaii. As of April 2021, it constituted 36.8% of all B.1.1.7 isolates in Washington. Phylogenetic analysis and transmission inference with Nextstrain suggest this sub-lineage likely originated in either California or Washington. Structural analysis revealed that the S:D178H mutation is in the NTD of the S protein and close to two other signature mutations of B.1.1.7, HV69-70del and Y144del. It is surface exposed and may alter NTD tertiary configuration or accessibility, and thus has the potential to affect neutralization by NTD directed antibodies.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.