|
Basic Characteristics of Mutations
|
|
Mutation Site
|
V96F |
|
Mutation Site Sentence
|
Table 4 HBsAg negative patients with amino acids substitutions in HBV S protein.Table 5 Frequency of amino acid substitution of HBV S protein in HBsAg negative and HBsAg positive patients. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
S |
|
Standardized Encoding Gene
|
S
|
|
Genotype/Subtype
|
B |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Hepatitis B Virus Infection
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
Y |
|
Treatment
|
- |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
37646026
|
|
Title
|
Host immunity and HBV S gene mutation in HBsAg-negative HBV-infected patients
|
|
Author
|
Liu X,Chen SX,Liu H,Lou JL
|
|
Journal
|
Frontiers in immunology
|
|
Journal Info
|
2023 Aug 14;14:1211980
|
|
Abstract
|
BACKGROUND: Clinically, some patients whose HBsAg becomes negative owing to antiviral therapy or spontaneously still show a low level of HBV DNA persistence in serum. T-lymphocyte subsets, cytokine levels and HBV S gene sequences were analyzed in this study. METHODS: A total of 52 HBsAg-negative and HBV DNA-positive patients(HBsAg-/HBV DNA+ patients), 52 persistently HBsAg-positive patients(HBsAg+/HBV DNA+ patients) and 16 healthy people were evaluated. T-lymphocyte subsets of these patients were detected by flow cytometry, serum cytokines and chemokines were detected by the Luminex technique, and the HBV S region was evaluated by Sanger sequencing. T%, T-lymphocyte, CD8+ and CD4+T lymphocyte were lower in the HBsAg-negative group than in the HC group. Compared with the HBsAg-positive group, the HBsAg-negative group had lower levels in T lymphocyte %, CD8+T lymphocyte %, CD8+T lymphocyte and CD4/CD8. These difference were statistically significant (P<0.05). Serum IFN-gamma, IFN-alpha and FLT-3L levels were significantly higher in the HBsAg-negative group than in the HBsAg-positive group (P<0.05). However, levels of many cytokines related to inflammation (i.e., IL-6, IL-8, IL10, IL-12, IL-17A) were lower in the HBsAg-negative group. Fifty-two HBsAg-negative samples were sequenced, revealing high-frequency amino acid substitution sites in the HBV S protein, including immune escape mutations (i.e., Y100C, S114T, C124Y, P127L, G130R, T131N, M133T, C137S, G145A) and TMD region substitutions (i.e., E2K/R/D, G7D/R, G10D, A17R, F20L/S, L21V, L22V). CONCLUSIONS: According to the results of T-lymphocyte subsets and serum cytokines, it can be deduced that the cellular immune function of HBsAg-negative patients is superior to that of HBsAg-positive patients, with attenuation of liver inflammation. HBsAg-negative patients may show a variety of mutations and amino acid replacement sites at high frequency in the HBV S region, and these mutations may lead to undetectable HBsAg, HBsAg antigenic changes or secretion inhibition.
|
|
Sequence Data
|
-
|
|
|