HIV Mutation Detail Information

Virus Mutation HIV Mutation Y120F


Basic Characteristics of Mutations
Mutation Site Y120F
Mutation Site Sentence By breaking down the specific HLA allele-associated mutations, we found that a number of the HLA-B*51:01-associated Y120F and Q125H mutations were most significantly associated with a reduced plasma viral load.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region Nef
Standardized Encoding Gene Nef  
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment Nef
Location Japan
Literature Information
PMID 33173092
Title Impaired ability of Nef to counteract SERINC5 is associated with reduced plasma viremia in HIV-infected individuals
Author Toyoda M,Kamori D,Tan TS,Goebuchi K,Ohashi J,Carlson J,Kawana-Tachikawa A,Gatanaga H,Oka S,Pizzato M,Ueno T
Journal Scientific reports
Journal Info 2020 Nov 10;10(1):19416
Abstract HIV-1 Nef plays an essential role in enhancing virion infectivity by antagonizing the host restriction molecule SERINC5. Because Nef is highly polymorphic due to the selective forces of host cellular immunity, we hypothesized that certain immune-escape polymorphisms may impair Nef's ability to antagonize SERINC5 and thereby influence viral fitness in vivo. To test this hypothesis, we identified 58 Nef polymorphisms that were overrepresented in HIV-infected patients in Japan sharing the same HLA genotypes. The number of immune-associated Nef polymorphisms was inversely correlated with the plasma viral load. By breaking down the specific HLA allele-associated mutations, we found that a number of the HLA-B*51:01-associated Y120F and Q125H mutations were most significantly associated with a reduced plasma viral load. A series of biochemical experiments showed that the double mutations Y120F/Q125H, but not either single mutation, impaired Nef's ability to antagonize SERINC5 and was associated with decreasing virion infectivity and viral replication in primary lymphocytes. In contrast, other Nef functions such as CD4, CCR5, CXCR4 and HLA class I downregulation and CD74 upregulation remained unchanged. Taken together, our results suggest that the differential ability of Nef to counteract SERINC5 by naturally occurring immune-associated mutations was associated with the plasma viral load in vivo.
Sequence Data LC547123-LC54720
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.