|
Basic Characteristics of Mutations
|
|
Mutation Site
|
Y181C |
|
Mutation Site Sentence
|
Table 1 HIV-1 nucleotide and non-nucleotide reverse transcriptase inhibitors and possible resistance mutations. |
|
Mutation Level
|
Amino acid level |
|
Mutation Type
|
Nonsynonymous substitution |
|
Gene/Protein/Region
|
RT |
|
Standardized Encoding Gene
|
gag-pol:155348
|
|
Genotype/Subtype
|
HIV-1 |
|
Viral Reference
|
-
|
|
Functional Impact and Mechanisms
|
|
Disease
|
Cell line
|
|
Immune
|
- |
|
Target Gene
|
-
|
|
Clinical and Epidemiological Correlations
|
|
Clinical Information
|
- |
|
Treatment
|
NNRTIs |
|
Location
|
- |
|
Literature Information
|
|
PMID
|
31025011
|
|
Title
|
Role of co-expressed APOBEC3F and APOBEC3G in inducing HIV-1 drug resistance
|
|
Author
|
Mohammadzadeh N,Love RP,Gibson R,Arts EJ,Poon AFY,Chelico L
|
|
Journal
|
Heliyon
|
|
Journal Info
|
2019 Apr 16;5(4):e01498
|
|
Abstract
|
The APOBEC3 enzymes can induce mutagenesis of HIV-1 proviral DNA through the deamination of cytosine. HIV-1 overcomes this restriction through the viral protein Vif that induces APOBEC3 proteasomal degradation. Within this dynamic host-pathogen relationship, the APOBEC3 enzymes have been found to be beneficial, neutral, or detrimental to HIV-1 biology. Here, we assessed the ability of co-expressed APOBEC3F and APOBEC3G to induce HIV-1 resistance to antiviral drugs. We found that co-expression of APOBEC3F and APOBEC3G enabled partial resistance of APOBEC3F to Vif-mediated degradation with a corresponding increase in APOBEC3F-induced deaminations in the presence of Vif, in addition to APOBEC3G-induced deaminations. We recovered HIV-1 drug resistant variants resulting from APOBEC3-induced mutagenesis, but these variants were less able to replicate than drug resistant viruses derived from RT-induced mutations alone. The data support a model in which APOBEC3 enzymes cooperate to restrict HIV-1, promoting viral inactivation over evolution to drug resistance.
|
|
Sequence Data
|
-
|