HIV Mutation Detail Information

Virus Mutation HIV Mutation Y181C


Basic Characteristics of Mutations
Mutation Site Y181C
Mutation Site Sentence Structural investigation of 2-naphthyl phenyl ether inhibitors bound to WT and Y181C reverse transcriptase highlights key features of the NNRTI binding site.
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region RT
Standardized Encoding Gene gag-pol:155348
Genotype/Subtype HIV-1
Viral Reference -
Functional Impact and Mechanisms
Disease HIV Infections    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment NNRTIs
Location -
Literature Information
PMID 32643196
Title Structural investigation of 2-naphthyl phenyl ether inhibitors bound to WT and Y181C reverse transcriptase highlights key features of the NNRTI binding site
Author Duong VN,Ippolito JA,Chan AH,Lee WG,Spasov KA,Jorgensen WL,Anderson KS
Journal Protein science : a publication of the Protein Society
Journal Info 2020 Sep;29(9):1902-1910
Abstract Human immunodeficiency virus (HIV)-1 remains as a global health issue that is primarily treated with highly active antiretroviral therapy, a combination of drugs that target the viral life cycle. One class of these drugs are non-nucleoside reverse transcriptase inhibitors (NNRTIs) that target the viral reverse transcriptase (RT). First generation NNRTIs were troubled with poor pharmacological properties and drug resistance, incentivizing the development of improved compounds. One class of developed compounds are the 2-naphthyl phenyl ethers, showing promising efficacy against the Y181C RT mutation. Further biochemical and structural work demonstrated differences in potency against the Y181C mutation and binding mode of the compounds. This work aims to understand the relationship between the binding mode and ability to overcome drug resistance using macromolecular x-ray crystallography. Comparison of 2-naphthyl phenyl ethers bound to Y181C RT reveal that compounds that interact with the invariant W229 are more capable of retaining efficacy against the resistance mutation. Additional modifications to these compounds at the 4-position, computationally designed to compensate for the Y181C mutation, do not demonstrate improved potency. Ultimately, we highlight important considerations for the development of future HIV-1 drugs that are able to combat drug resistance.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.