VZV Mutation Detail Information

Virus Mutation VZV Mutation Y835A


Basic Characteristics of Mutations
Mutation Site Y835A
Mutation Site Sentence Cell surface expression levels were different between the mutants, with gH[Y835A] having levels of surface expression greater than gH[WT] and gH[Y835F] having levels similar to the gH[WT] (Figure 3B).
Mutation Level Amino acid level
Mutation Type Nonsynonymous substitution
Gene/Protein/Region gH
Standardized Encoding Gene ORF37  
Genotype/Subtype -
Viral Reference -
Functional Impact and Mechanisms
Disease Cell line    
Immune -
Target Gene -
Clinical and Epidemiological Correlations
Clinical Information -
Treatment -
Location -
Literature Information
PMID 24874654
Title The cytoplasmic domain of varicella-zoster virus glycoprotein H regulates syncytia formation and skin pathogenesis
Author Yang E,Arvin AM,Oliver SL
Journal PLoS pathogens
Journal Info 2014 May 29;10(5):e1004173
Abstract The conserved herpesvirus fusion complex consists of glycoproteins gB, gH, and gL which is critical for virion envelope fusion with the cell membrane during entry. For Varicella Zoster Virus (VZV), the complex is necessary for cell-cell fusion and presumed to mediate entry. VZV causes syncytia formation via cell-cell fusion in skin and in sensory ganglia during VZV reactivation, leading to neuronal damage, a potential contributory factor for the debilitating condition of postherpetic neuralgia. The gH cytoplasmic domain (gHcyt) is linked to the regulation of gB/gH-gL-mediated cell fusion as demonstrated by increased cell fusion in vitro by an eight amino acid (aa834-841) truncation of the gHcyt. The gHcyt regulation was identified to be dependent on the physical presence of the domain, and not of specific motifs or biochemical properties as substitution of aa834-841 with V5, cMyc, and hydrophobic or hydrophilic sequences did not affect fusion. The importance of the gHcyt length was corroborated by stepwise deletions of aa834-841 causing incremental increases in cell fusion, independent of gH surface expression and endocytosis. Consistent with the fusion assay, truncating the gHcyt in the viral genome caused exaggerated syncytia formation and significant reduction in viral titers. Importantly, infection of human skin xenografts in SCID mice was severely impaired by the truncation while maintaining the gHcyt length with the V5 substitution preserved typical replication in vitro and in skin. A role for the gHcyt in modulating the functions of the gB cytoplasmic domain (gBcyt) is proposed as the gHcyt truncation substantially enhanced cell fusion in the presence of the gB[Y881F] mutation. The significant reduction in skin infection caused by hyperfusogenic mutations in either the gHcyt or gBcyt demonstrates that both domains are critical for regulating syncytia formation and failure to control cell fusion, rather than enhancing viral spread, is severely detrimental to VZV pathogenesis.
Sequence Data -
Mutation Information
Note
Basic Characteristics of Mutations
  • Mutation Site: The specific location in a gene or protein sequence where a change occurs.
  • Mutation Level: The level at which a mutation occurs, including the nucleotide or amino acid level.
  • Mutation Type: The nature of the mutation, such as missense mutation, nonsense mutation, synonymous mutation, etc.
  • Gene/Protein/Region: Refers to the specific region of the virus where the mutation occurs. Including viral genes, viral proteins, or a specific viral genome region. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main
  • Gene/Protein/Region studied in the article is marked.
  • Genotype/Subtype: Refers to the viral genotype or subtype where the mutation occurs. If the article does not specifically indicate the relationship between the mutation and its correspondence, the main Genotype/Subtype studied in the article is marked.
  • Viral Reference: Refers to the standard virus strain used to compare and analyze viral sequences.
Functional Impact and Mechanisms
  • Disease: An abnormal physiological state with specific symptoms and signs caused by viral infection.
  • Immune: The article focuses on the study of mutations and immune.
  • Target Gene: Host genes that viral mutations may affect.
Clinical and Epidemiological Correlations
  • Clinical Information: The study is a clinical or epidemiological study and provides basic information about the population.
  • Treatment: The study mentioned a certain treatment method, such as drug resistance caused by mutations. If the study does not specifically indicate the relationship between mutations and their correspondence treatment, the main treatment studied in the article is marked.
  • Location: The source of the research data.
Literature Information
  • Sequence Data: The study provides the data accession number.